
The sndsys tutorial

Volker Schatz

October 10, 2007

Contents

1 What’s sndsys? 2

2 Getting started 3
2.1 Requirements . 3
2.2 Useful supplementary software 4
2.3 A look at a sndsys program . 4
2.4 How to run it . 6

3 Generating simple sounds 7
3.1 Guess what – a sine . 7
3.2 Other tones . 8
3.3 Random noise . 9
3.4 Modulation – trees of sndobj’s 9
3.5 Chords – adding up . 10

4 Modifying sounds 11
4.1 Reading a wave file . 11
4.2 Highpass and lowpass . 12
4.3 Peak and notch filters . 12
4.4 General filters . 13
4.5 Reverberation and basic mixing 14
4.6 Distortion and effects . 16

5 Give every tone its cue 17
5.1 Envelope shaping . 17
5.2 Cues and ramps . 18
5.3 Auxiliary triggered objects . 19
5.4 A humaniser . 20

6 Miscellaneous sndobj’s 20
6.1 Delays . 20
6.2 Arithmetic and comparisons . 21
6.3 Stereo and multi-channel processing 21

1

6.4 Mixing and panning . 22
6.5 Speaker and microphone . 24
6.6 Threads . 25
6.7 A curiosity: Verhulst dynamics 26

7 Advanced sound synthesis 26
7.1 Waveforms . 27
7.2 Fix the clicks . 29
7.3 Fractional Brownian motion — a noise generator 30
7.4 More noise and randomised cues 31
7.5 Waveform manipulations . 32
7.6 A string model — backfeed loops 33
7.7 Scores and instruments . 34

8 Wavelets 39
8.1 Wavelet transforms . 39
8.2 Manipulating wavelet bands . 42
8.3 Controlled manipulation . 45

9 More information 45

References 46

1 What’s sndsys?

sndsys is a stream-based digital signal processing system designed for
synthesising and processing digitised sound. Its successive processing elements,
called “objects” or “sndobj’s”, read and process each other’s output one by one.
sndsys was written in C, and users wanting to expand it by defining their own
sndobj’s will not get around knowing that programming language. Even for
merely using what is there, you will have to write C programs. But the syntax
is fairly basic, and will be introduced step by step in the first chapters of this
tutorial.

Rather than a shared library, sndsys is simply a set of C functions which can
be compiled together with your own program. Due to the fact that I continue
to modify it as I see fit, programs which use one version may not be 100%
compatible with later versions. For that reason there are no version numbers
yet; instead, the tar archive in which sndsys can be downloaded from my
homepage, www.volkerschatz.com/noise, is named after the date at which it
was created.

sndsys is c© 2004–2007 by Volker Schatz and may be copied, modified and
redistributed under the terms of the GNU General Public License as published
by the Free Software Foundation (see www.gnu.org). This tutorial is c© 2007
by Volker Schatz and may be copied and modified under the terms of the GNU
Free Documentation License, also published by the Free Software Foundation.

2

www.volkerschatz.com/noise
www.gnu.org

This tutorial was written with two goals in mind: The first is to give folks
who are new to it and are considering using it an introduction. The following five
chapters present usage examples and tell you how to do with sndsys what you
could probably do with any digital sound synthesizer. The chapters after that
are about advanced features of sndsys which cannot easily be found elsewhere,
at least not in a program designed to generate music. They serve the second
aim of this tutorial: To present and interest people in techniques which are not
commonly used for sound synthesis, with which I have been experimenting using
sndsys. Prominent among these are the wavelet methods in Section 8. sndsys
is primarily a test bench which provides scope for experimentation. This text
explains what it is about.

2 Getting started

As I already mentioned in the introductory section, there is at present no way
of using sndsys without writing a small C program (and there will not be until
and unless someone writes a graphical front-end for it, which I unfortunately
have no time to do right now). To give non-experts an easier start, a simple
framework program is distributed with sndsys. Before we have a look at it, let
us get over with the boring task of checking your system for requirements.

2.1 Requirements

What you absolutely need are a Linux or UNIX system, a shell, a text editor,
a version of the make utility and a C compiler. If you are condemned to
working on a billionaire crashware platform, you might want to try Cygwin
(www.cygwin.com), which provides a pretty UNIX-compatible environment
without the need to install a separate operating system. Either way, some
experience using UNIX is required, as we will be working from a shell command-
line. From a graphical window manager, opening a terminal window (xterm,
konsole or gnome terminal) will give you access to a shell, usually bash.

A make utility and a C compiler will usually be available on any Linux/UNIX
system. As I use Gnu make, this is probably the safest choice if you have different
incarnations of make available. For a compiler, I use the Intel compiler, which is
free for private use under Linux. The Makefile automatically detects whether it
is available and falls back to the Gnu C compiler gcc if necessary. If you use icc
on a newish Intel processor, you will see bragging messages about loops being
vectorised. Before I switched them off, gcc churned out lots of spurious warning
about unreachable code because it is too dumb to comprehend if constructs.
To each its own.

Lastly, if you want to compile all of the example programs, you will need
some libraries and the corresponding header files. An absolute requirement is
the math library. It is part of the C library and therefore should be installed
if you have a compiler, including header files. Two other libraries can be done
without if necessary, but you will have to remove them from the Makefile variable

3

www.cygwin.com

LIBS, comment out the object sndthread from sndmisc.c and will not be able
to compile the piano program: the POSIX threads library (libpthread.so.0, for
sndthread) and the X11 library (libX11.so.?, for piano). Neither should be a
problem, as the libraries themselves should be present on any UNIX-like system,
but possibly you have to install the header files which many Linux distributions
store in different packages with names ending on . . . -dev or . . . -devel.

2.2 Useful supplementary software

As most of our example sndsys programs write their output to a file, you are
recommended to use a wave file player of your choice. (Though sndsys can also
output sound via your soundcard, see Section 6.5.) The utility sox [sox] can
convert sound formats and comes with a command-line wave file player.

Viewing generated waveforms can be done with a wave file editor. The most
sophisticated one I know is snd [snd]; others are sweep [swe] and kwave [kwa].

2.3 A look at a sndsys program

Now the arduous technical details have been dealt with, let’s have a look at the
example source file. It is called frame.c and contains the following lines of code:

#include "sndsys.h"

int main(int argc, char *argv[])
{
sndobj *output;
double duration;

output= c(0);
duration= 2.0;
sndexecute(0, duration, writeout("frame.wav", output));
return 0;

}

The first line includes the sndsys header file which tells the compiler about
all the sndsys functions available. You have to include this line whenever you
want to use sndsys. Next comes the definition of the main program, starting
with the declaration of its arguments. If you know C, you will know what
they mean, otherwise ignore them. The opening brace which starts the main
program’s code is followed by the declaration of two variables. The first has
the type “sndobj *”, which is the type we use to denote sndsys objects. The
second is a double-precision floating-point variable whose only role is to store,
and give a name to, the duration of the sound we want to generate.

The core of the program is really the first line of code after the variable
declarations. The variable output is assigned the return value of a function c,
which takes a numerical argument we set to zero. This function is the simplest

4

example of a sndobj, as it outputs the constant which is its argument over and
over again. At this point I want to make clear an important distinction in
sndsys: Its fundamental data type, the sndobj *, is really a rather complex
thing. You can think of it as a stream of data values, as a waveform, a signal,
or as a tone or melody. On the other hand, we will also need plain and simple
numbers which we give a certain value but which do not change at all during
the runtime of the program, when our sounds are generated. The constant
sound object c(0) and the constant number 0 are not at all the same
thing! The former is a data source which outputs zeros ad infinitum, while the
latter is just one zero constant. It’s the same difference as between a printer
and a piece of paper with a number on it.1 It is very important to be aware of
this difference because more complicated objects will have both constants and
signals (denoted by the objects which output them) as arguments. If you ignore
it, the C compiler will punish you with lots of obscure error messages.

Back to our first simple example program. We have now defined what
kind of sound we want to generate by writing the line output= c(0);. Some
administrational tasks have to be performed for making the generated data
available in a file. These are taken care of by the line starting sndexecute....
The sndexecute function, after some administrational stuff, simply makes a
sound object generate output for the given duration, and throws that output
away. Why? On the other hand, why not? You might want to observe the
signal at different stages in the processing without running the program several
times, or write different generated signals to different files. That is why the
operation of output to a file is implemented as an object, writeout. It has two
arguments: the name of the file and the signal which it is to write to that file.
The writeout object itself serves as an argument to the function sndexecute.
Its output is in the widespread wave file format, which can be played by many
software players. The range of floating point values which sndsys uses internally
being mapped to the wave file value range is from -1 to +1. Any output outside
this interval will be clipped to the maximum, which sounds nasty. So remember
that whatever sounds you generate, the maximum value should not exceed ±1.
After the computation is complete, the writeout object prints out the maximal
and minimal values it received for your information.

Why was the writeout object put inside the sndexecute function? There
was no need to do that. One could equally well have written:

...
output= writeout("frame.wav", c(0));
duration= 2.0;
sndexecute(0, duration, output);
...

Now the output variable denotes the output of the writeout object. This
variable is then passed to sndexecute. The processing chain is the same

1Of course, at some level, the things output by a sndobj are numerical values, but if you
want to know about those details, you should not read this tutorial but learn C and have a
look at the source code.

5

as before: “First, generate a stream of zeros. Then, write them to the file
frame.wav.” Only the point in the chain where we used the variable is different.
Alternatively, we could have done completely without the variable:

...
duration= 2.0;
sndexecute(0, duration, writeout("frame.wav", c(0)));
...

The original version of the frame program was written in a way that
separates the generation of the sound and the writing of the wave file. Down
below, we will modify the former while keeping the latter unchanged and will
therefore always refer to that version. When you substitute different assignments
of the output variable, you do not have to delete prior versions. The C
programming language allows two different types of comments, which can be
used to disable unused code. The first starts with “//” and extends up to the
end of the line. To comment out the current assignment to output, prepend
the comment sign:

// output= c(0);

This kind of comment is easiest to use, but rather new, so that there may be
compilers in existence which do not support it. Traditional C comments start
with “/*” and end with “*/”. Their advantage is that they can extend over
several lines. For instance, you could comment out both the assignments to
output and duration (before adding new such assignments):

/*
output= c(0);
duration= 2.0;

*/

2.4 How to run it

To generate the sound described by frame.c, it has to be compiled and run. To
do that, first change to the sndsys directory in a shell using the cd command.
Then, execute the following shell command (the dollar sign denotes the shell
command prompt):

$ make frame.wav

This will automatically compile frame.c along with sndsys, link the
necessary libraries, and run the executable to generate the wave file. (If you
create your own program, you have to add its name (without the .c extension)
to the DISTTARGETS line in the Makefile to be able to use this automatism.)
After running frame, you will see an output similar to the following:

6

Computation finished. Time taken: 0.005 seconds for 88200 samples (2 seconds);
16961538 samples per second.
Writeout to ‘frame.wav’ finished. Min= 0, max= 0.

This is the information output by the writeout object when processing has
finished. As we have output a signal containing only zeros, both the minimum
and the maximum are zero.

3 Generating simple sounds

In the following, we will finally see how to generate something other than
constant zero ;). We will continue to use the frame program, but will substitute
the line output= c(0); . I will only give the replacement of that line when
presenting code. The rest of the framework program, including the writeout
object, will always be assumed to be there.

3.1 Guess what – a sine

Let’s generate a sine wave at the standard pitch, 440 Hz. This works as follows:

output= sine(0, c(440), c(1));

The sine object takes three arguments: a constant phase, the frequency and
the volume. The phase is a constant. Passing it as 0 gives a sine wave, 0.25 would
give a cosine. The other two arguments are themselves sndobj’s. We just happen
to have chosen them to be constant objects c(...) (Remember my remarks on
the difference between constant numbers and constant sound objects?). Their
output is input into the sndobj sine and determines its frequency and volume.
We will therefore henceforth call them the inputs of the sine object.

You can display brief documentation for sine (and other sndobj’s) with a
Perl script which comes with sndsys. On a shell prompt in the sndsys directory,
type

$./objectdoc.pl sine

(In fact, if your shell is any good, you will just have to type “./o”, press
Tab and type “sine”.) The command generates the following output:

sndsource.c:
sine (phase/2pi) <freq> <ampl>

Generates a sine oscillation. The float argument phase_2pi determines the
initial phase divided by 2 pi (360 degrees). The following argument, the first
input, is the frequency, the second the amplitude.

See also: harmonic, rect, saw

sndobj *sine(float phase_2pi, sndobj *freq, sndobj *ampl)

7

The first line gives the sndsys source file in which the object is defined.
The second line displays a stylised argument list: arguments in parentheses are
numerical constants, while arguments in angular brackets are inputs. (Objects
can also have array arguments, which are displayed in rectangular brackets, and
string arguments, which are put in quotes.) This has nothing to do with the
C syntax, it is just my way of documenting the arguments. Then follows a
description of what the sndobj does. The last line gives the C declaration of the
object (for those who want to know the exact data types).

The sndobj descriptions are embedded in comments in the source code; all
the script objectdoc.pl does is extract them and print them. At the moment,
it can only be used from within the sndsys directory, because it has no way to
find the source files otherwise. If you need to access it from any directory, and if
you use the shell bash, you can define the following shell function (for instance
in your .bashrc):

$ objectdoc() { (cd /sndsys/directory && ./objectdoc.pl "$1";) }

You have to replace /sndsys/directory by the absolute path name of your
sndsys directory.

Next to objectdoc.pl, which is the main documentation tool for sndsys
objects, there is grepobj.pl. This script functions similarly to the UNIX
tool grep or the manual reader man with the -k option. It searches the
documentation of all sndobj’s for lines containing the word which is its argument
and prints the lines prepended by the name of the sndobj. This allows you to
search for sndobj’s related to a specific task. Remember that I use British
spelling.

3.2 Other tones

Two more objects which generate simple tones are rect and saw. They take the
same arguments: A parameter which defines the starting phase and three inputs
giving the frequency, amplitude and shape of the output. The “shape” input is
called “ratio” and determines the ratio between the positive and negative part
of the rectangular signal and the rising and falling part of the sawtooth (though
it is not actually equal to that time ratio numerically). For example, to generate
a symmetric rectangular waveform, you would write:

output= rect(0, c(440), c(1), c(0));

For generating a sawtooth with rising slopes and immediate downward
jumps, do the following:

output= saw(0, c(440), c(1), c(1));

The following generates a rectangular wave which is mostly negative with
the exception of one positive value per period:

output= rect(0, c(440), c(1), c(-1));

8

It contains more high frequencies than the symmetric rectangular wave and
sounds sharper.

3.3 Random noise

Beside tones, random noise is frequently used. There are two basic noise
generators in sndsys, flatrand and gaussrand. Both take one argument
determining the volume. In the case of flatrand, the argument is the actual
maximum amplitude of the output signal. For Gaussian noise, the output
value can in principle be arbitrarily large, though with exponentially decreasing
probability. For estimating the amplitude of Gaussian noise, it is useful to
know that only 0.3% of the values will lie outside an interval of three times
the mean deviation σ (which is the argument of gaussrand). So if you want a
Gaussian random output with a certain “maximum” value, choose σ as 1/3.5
to 1/3 times the maximum. For instance, Gaussian noise in the interval [−1, 1]
can be produced by:

output= gaussrand(0.3);

3.4 Modulation – trees of sndobj’s

Generating tones with constant pitch and volume is nice, but loses its appeal
pretty quickly. Fortunately, varying them is easy. Remember how we
discussed, in Section 2.3, the difference between constant arguments and inputs
representing data streams? If not, going back and rereading a few sentences
around the bold-face text might be a good idea. The frequency and volume
arguments of sine and other waveform generators are inputs — they can receive
the output of any sound object, which may vary with time. To produce a siren
with periodically varying pitch, we code the following:

output= sine(0, linear(440, 40, sine(0.25, c(1), c(1))), c(1));

This code fragment contains three sndobj’s: a sine which generates the
tone, a linear object which we will come back to, and another sine which
generates the variation in pitch. The latter sine has a frequency of one Hertz
and a starting phase of 1/4 period, which means it is actually a cosine.

The linear object is used to solve the problem that a sine or cosine always
has zero crossings. We want to vary the generated frequency in a certain
range, but certainly do not want to go down to zero Hertz. The linear object
multiplies its second constant argument with its only input (third argument),
adds the first argument, and outputs the result to the frequency input of the
sine generating the tone. This causes the frequency of the siren to vary between
400 and 480 Hz. Briefly and mathematically put, linear(a, b, input) gives
a + b · input. linear is a very simple object, but is used frequently for similar
purposes as here.

Similarly, a tone’s amplitude can be modulated to generate a simple tremolo
effect. Using a rectangular waveform this time, the source code fragment is:

9

output= rect(0, c(440), linear(0.8, 0.15, sine(0, c(6), c(1))), c(0));

Obviously, the only difficulty is getting the matching of the parentheses right.
Use an editor intended for editing source code, which will highlight matching
parentheses, such as NEdit, emacs or vi (for hackers).

3.5 Chords – adding up

After being content with single tones for so long, let us now learn how to generate
chords. The most obvious way to do this is to use the add object. Its first
argument is the number of inputs to add up, followed by the inputs themselves.2

You add up three sine waves in the following way:

output= add(3, sine(0, c(440), c(0.3)), sine(0, c(550), c(0.3)),
sine(0, c(660), c(0.3)));

There is no harm in continuing the instruction on a second text line, as C
is not a line-oriented language. We have added together three sine waves with
different pitches to give the triad of A major. The amplitude was reduced so
the sum does not exceed 1.

This way of creating a chord works well so long as the pitch is constant.
If one wanted to create a simple instrument playing the same chord with a
varying root note, however, this would be a little complicated. One would have
to compute the other two pitches from the root pitch using linear and feed
then into the relevant frequency inputs of the sines. There is a simpler way.
Because chords are frequently used, there exists an object generating a chord
of sine waves with a variable root frequency and amplitude: harmonic. Its
first argument is a table determining the notes in the chord, followed by the
frequency and volume inputs. View the documentation of harmonic with the
script objectdoc.pl.

We have to learn a new feature of the C programming language to define
the table. We will confine ourselves to declaring and initialising a table, which
will then remain constant. Below the declaration “double duration;” insert
the following line into our framework program:

float chord[]= { 1, 0.3, 0, 1.25, 0.3, 0, 1.5, 0.3, 0, END };

Briefly explained, float defines the type of the table’s contents (single
precision floating point), the brackets indicate that an array rather than a single
value is being declared, and the numbers in curly braces are the numbers with
which the table is initialised. (Because of this initialisation, the length of the

2It is vitally important that the number of input arguments is at least the number given in
the first argument. Otherwise the program will probably crash. Program crashes are nothing
horrible, no worse from a practical point of view than the program generating something
different from what you want or otherwise malfunctioning. To allow the compiler to do this
kind of consistency check for you and prevent such crashes, sndsys would have to have been
written in C++, but it wasn’t.

10

array need not be given between the brackets.) The special value “END” has
nothing to do with the C syntax but is defined in the include file sndsys.h. It
tells the harmonic object that no more notes follow.

harmonic interprets the note table in the following way: Every set of three
successive values defines one of the notes in the chord. The first value gives the
frequency of the note relative to the root frequency. The second is the volume
of the note relative to the volume which harmonic receives from its input. The
third is the starting phase, as in the first argument of sine. Giving the value
END for the frequency concludes the table.3

Generating the same triad as above with the harmonic object and the table
we just defined works like this:

output= harmonic(chord, c(440), c(1));

The constant object c(440) gives the root pitch of the chord. You can easily
vary the pitch or amplitude as we did in Section 3.4.

4 Modifying sounds

This section treats all kinds of filters which influence the sound of waveforms.
The explanations will be less verbose than in the previous section, as the general
usage of sndobj’s should by now have become clear. Some objects will only
be mentioned; you can read their documentation with objectdoc.pl to find out
more. The code examples given will be fewer and designed mostly to give you an
example of reasonable parameter values as a starting-point for playing around
yourself.

4.1 Reading a wave file

This section does not yet present a filter; instead, it introduces a sndobj which
will allow you to apply them to your favourite song: the file object, which can
read a .wav file. Its simplest usage is:

output= file("filename.wav", NULL);

If you put this line into frame.c, it outputs the first two seconds of the input
file. To process a longer interval, edit the value assigned to duration.

The file object can also read waveforms in different formats (such as plain
text files containing time-value pairs or simply values) and recognises the file
type by the file extension. So your wave file has to have the extension .wav.

The second argument, NULL, tells file that its optional input is unused.
This is something of an exception. Most sndobj’s have only required inputs and
will (you guessed) crash if you replace one with NULL.

3It is vitally important that you do not miscount and put the END in place of the volume
or phase instead of the frequency. Otherwise the program may crash. If that worries you, add
three END values instead of just one.

11

4.2 Highpass and lowpass

The simplest and most frequently used objects for altering sounds are highpass
and lowpass. They have two inputs: the cutoff frequency which separates the
blocked frequencies from those which can pass through; and the signal the filter
should be applied to. These two filters have a very smooth frequency response,
that is their attenuation does not change steeply even in the vicinity of the cutoff
frequency. As a consequence, they do not change sounds radically, merely tint
them brighter or darker. Try them out on a wave file of your favourite song:

output= lowpass(c(300), file("song.wav", NULL));

sndsys provides other high- and lowpass filters which allow more precise
control and change sounds more strongly. A very useful one is shelve, a shelve
highpass and lowpass filter rolled into one. It has an additional input which gives
the relative amplitude of very high compared to very low frequencies.4 The filter
is normalised in such a way that the output never exceeds the input in amplitude
— only the frequencies which should not pass are attenuated. This object has
a less smooth frequency response than the simpler highpass and lowpass. The
attenuation is almost constant outside a neighbourhood of the cutoff frequency
(hence the name), where it changes comparably rapidly. This makes it suitable
for shaping sounds. Consider the following code fragment, which builds a band-
stop filter from two shelve objects and makes the random noise from flatrand
sound very different:

output= shelve(c(50), c(10), shelve(c(3000), c(0.1), flatrand(1)));

Compare it with the unchanged output of flatrand!
I would like to mention two other sndobj’s which fall into the category of

high- or lowpass: dcblock is a DC blocker, a very tolerant highpass designed to
block only the very lowest frequencies. It is useful when feedback loops cause the
long-time average of a signal to drift, as sometimes happens. avg is a moving
average filter, which has a rather radical lowpass behaviour. It has an input
which allows to mix the filtered signal with the unchanged signal, and even
create a highpass by subtracting the filtered signal.

4.3 Peak and notch filters

sndsys also provides filters which emphasize frequencies close to a given
centre frequency. The most versatile is peaknotch, which can also attenuate
a frequency. Its inputs are the centre frequency of the peak or notch, the
amplitude gain (see the footnote in the previous section for how to convert it
from dB), the width of the peak and the signal. If the gain factor is < 1,
the filter is a notch filter, otherwise a peak filter. Experience shows that the

4Because I am a physicist rather than a sound engineer, this input is not in dB ;). One dB
amounts to a factor of 1.122 in the amplitude, so to obtain an attenuation of x dB, you have
to set the <ratio> to 1.122±x = exp(±0.115 x) (+ for a highpass, − for a lowpass).

12

notches are less pronounced than the peaks for the same bandwidth — so it
makes sense to choose larger widths when using peaknotch as a notch filter.
If you have access to the sound editor snd, apply peaknotch to white noise
generated with flatrand and view the frequency spectrum with snd’s frequency
display. Choose a large window size in the Transform Options dialog to get
better frequency resolution.

Two other filters which can emphasize the frequencies close to a given centre
frequency are peak and formant. Besides the signal input, both have inputs for
the centre frequency and the width of the peak. Only the kind of bandwidth
input differs: formant has an input for the actual bandwidth in Hertz, peak
has an input I called “sharpness”, which causes the peak to become narrower
as it approaches 1. While their frequency response is similar for corresponding
parameters, their range of parameters makes peak more suitable for only slight
emphasis on a certain frequency, and formant better for narrow resonances. (To
achieve the respective opposite, you would have to pass peak a sharpness above
0.95, and give a bandwidth of 1 kHz or above to formant.) For instance, peak
lends itself well to a “wahwah” effect. Try it out on a wave file of a song:

output= peak(c(0.95), linear(800, 200, sine(0, c(2.1), c(1))),
file("song.wav", NULL));

peak and formant differ from peaknotch in a similar way as highpass
and lowpass differ from shelve. The former filters affect frequencies across
the whole spectrum, while the latter’s frequency response is constant outside a
certain range.

4.4 General filters

This section presents how you can implement any FIR or IIR filter you find in
a book or on the Web. For that purpose, sndsys provides the filter object.
It has two array arguments giving the backfeed and forwardfeed. Both have the
same format. They contain pairs of values, the first of which is the delay given
in terms of sample values and the second the coefficient. The list is concluded
with the special value END. Suppose you want to use a filter with the following
difference equation:

y(n) = 0.01 x(n) + 0.002 x(n− 1) + 0.99 y(n− 1)

A difference equation gives the prescription of how to calculate the current
output value y(n) from previous output values and current and previous input
values x(. . .). The coefficients of x(n) and x(n − 1) are called the forwardfeed
coefficients, while in this example the coefficient of y(n − 1) is the backfeed
coefficient. You program this filter in sndsys as follows:

float forwfeed[]= { 0, 0.01, 1, 0.002, END };
float backfeed[]= { 1, 0.99, END };

output= filter(forwfeed, backfeed, file("song.wav", NULL));

13

(I am assuming here that you want to apply the filter to a song stored in a
wave file.) At this point two issues with minus signs should be mentioned. The
delay values in the arrays are always positive; if you have an x(n − 5) in the
difference equation, the delay value will be 5. The coefficients have to be given
including their sign. You may come across difference equations with terms like
− a3 y(n − 3), with a3 given separately. In this case, the coefficient is −a3 as
far as filter is concerned.

The filter object gives you the opportunity to define filters with constant
coefficients. This may mean that you have to recalculate the filter coefficients
when you want to change its parameters, such as the cutoff frequency of a low-
or highpass. The filter object can be used to create filters whose coefficients
change depending on inputs — and in fact that is how many of sndsys’s filters
work. But in order to do that, you have to do some “genuine” C programming,
and your best guide is the implemenentation of the filters in sndfilt.c.

4.5 Reverberation and basic mixing

Next to high- and lowpasses and other filters modifying the frequency spectrum
of a sound signal, reverberation is probably the most widely used kind of sound
modification. I have implemented several reverberation objects, most based
on algorithms I found on various websites. Probably the most well-known is
freeverb, which is also implemented in other sound processing tools, such as
snd and csound. Unlike the sndobj’s we have been dealing with previously,
it produces stereo output. However, this does not require any change to our
example program, as the writeout object automatically knows how to deal
with it an writes a stereo wave file. See Section 6.3 for more on stereo signals.

freeverb has four more inputs next to the actual sound signal. They
determine the length of the reverberation, the balance of high and low
frequencies, the proportion of reverberation which crosses between the left and
right channel, and the amount of reverberation to mix into the signal. Read the
documentation (to be obtained via objectdoc.pl as always) and start playing
around. For instance, try this out on your favourite song:

output= freeverb(c(0.4), c(0.5), c(0.1), c(0.2), file("song.wav", NULL));

Two other reverberation objects output only the actual reverberation sound,
which has to be scaled down and added to the unmodified signal. They are called
nrev and josrev. Let us look at josrev5 first, which has only one input in
addition to the sound signal, namely the cutoff frequency for a lowpass used
internally. We can get a strong reverberation by mixing its output 50/50 with
the original signal. How do we do that? We could write:

output= linear(0, 0.5, add(2, file("song.wav", NULL),
josrev(c(300), file("song.wav", NULL))));

5It is named after Julius O. Smith because it is based on a suggestion in one of his online
books [jos].

14

There is another way which saves us some typing: We can declare a variable
similar to the output variable, only for the file object’s output.

sndobj *thefile;

thefile= file("song.wav", NULL);
output= linear(0, 0.5, add(2, thefile, josrev(c(300), thefile)));

There is also an internal difference between this formulation and the one
above, which makes this one strongly preferable: If we use two file objects,
the calculations needed to deliver the file’s contents will be duplicated, while
only the values will be duplicated if we use a variable. That does not matter
much in the case of a file object, but if you generate a complicated sound to
which you later apply a reverberation, the first version may slow you down by
almost a factor of two. So if you need to feed the same signal into two different
inputs, declare a variable, assign the signal to it and pass that variable to the
relevant inputs.

Now what if you want to mix a smaller amount of reverberation into a sound
signal? Of course you could scale the reverberation with linear, then add it
together with the original signal, and perhaps scale the result again. . . but
there is a better way. The sndobj for mixing two signals is mix2. Its first input
<gate> determines how the following two signal inputs are mixed. If <gate>
is 1, only the first signal is output, if it is 0, only the second signal — the idea
is that <gate> is the coefficient of the first signal. Let us try it out together
with nrev:

sndobj *thefile;

thefile= file("song.wav", NULL);
output= mix2(c(0.9), thefile, nrev(5, 0.7, 0.2, thefile));

Note that the parameters of nrev are constants, not inputs, and that the
middle parameter is a filter coefficient, not a lowpass cutoff frequency.

Two more reverberation objects shall be mentioned. Both are experimental
and extremely CPU-hungry. boxrev is inspired by the idea of sound waves
being multiply reflected on the inside of a box before they reach the listener.
All the paths by which the sound waves can reach the listener within a certain
cutoff time are computed and the signals with appropriate delay and attenuation
are added up. boxrev’s first argument is a table containing the delays and
attenuation factors corresponding to each dimension of the box, followed by
END. There may be fewer or more than 3 delay/attenuation pairs if you so
choose — corresponding to reflection around a rectangle or a hyper-box. As an
example, try the following values:

sndobj *thefile;
float boxdims[]= { 0.165, 0.6, 0.114, 0.7, 0.0724, 0.8, END };

15

thefile= file("song.wav", NULL);
output= boxrev(boxdims, 2.0, 0.1, thefile);

This reverberation sounds unnaturally bright because it does not contain
any lowpass. You might want to add a lowpass filter to change that.

The other experimental reverberator is called convrev. It generates a
filter kernel using several noise generators and processes the sound signal
by convoluting it with this kernel. The kernel is composed of three parts:
particularly clear direct reflections (echos), indirect reflections (also echos of
a sort, but dense enough not to sound echo-ish) and noisy ambient reflections.
The duration of those three parts are the first three parameters of convrev, their
relative volume is determined by the other two. As for the other reverberators,
here is an example as a starting-point for your experimentation:

sndobj *thefile;

thefile= file("song.wav", NULL);
output= convrev(1.5, 0.7, 0.3, 6, 3, c(0.95), thefile);

While we are talking about reverberation, the convolve object should not
go unmentioned. It allows you to use a reverberation (or other) kernel you
have downloaded from somewhere (for instance here) and saved in wave file
format. Simply use a file object as the <kernel> input of convolve. The only
downside is the extremely long computation time.

4.6 Distortion and effects

Also already implemented in sndsys are several kinds of effects. Distortion of
electric guitars is most easily achieved by clipping. The sndobj clip clips a
signal to be less than another (in absolute terms). In order to use it to distort
a signal, choose the clipping input as the squared mean of the signal, provided
by the sndobj fastrms.6 By varying the (quench) parameter of clip, you can
adjust how strongly the signal is clipped when it exceeds the limit.

sndobj *thefile;

thefile= file("song.wav", NULL);
output= clip(0.5, fastrms(c(10), thefile), thefile);

Other sndobj’s which can be used for distortion are softclip,
crossoverdist and arithmetic (see Section 6.2; try taking the signal to the
power 1/4 for distortion).

Among the effects which sound less nasty than distortion are flanger,
phaser and leslie. flanger and phaser are similar in that both suppress
certain discrete frequencies, but differ in the relative location of those

6Root of mean square.

16

http://www.echochamber.ch/responses/index.html

frequencies. Their effects are especially audible if one varies the base frequencies
from which the others are derived. For flanger this is done by varying the
<delay> input (which is the inverse of the base frequency), for phaser vary
the <basefreq> input. leslie is another classical effect which is a bit hard to
describe — try it out.

5 Give every tone its cue

In the previous sections we have learnt to generate and shape sounds. But that
is only one step on the way to creating melodies and music. To that end, we
will also need to define the starting time and development with time of a note.
This is what we will learn in this chapter.

5.1 Envelope shaping

In this section I will present sndobj’s which define the enveloping curve —
envelope for short — of a tone. They all have a cue input (which I sometimes
also call a “trigger”). This cue input is expected to be zero except when a new
note starts. The maximum of the envelopes will be proportional to (usually
equal to) the non-zero cue value.

The most well-known envelope shaper is the ADSR (attack, decay, sustain,
release) envelope, represented in sndsys by the adsr object. It is a piecewise
linear function which first rises, then falls off to its “sustain” level and finally
falls off to zero. The lengths of these four phases and the proportion of the
sustain level are the (constant) parameters of adsr.

sndsys provides several other envelope shapers which have fewer parameters.
expodecay outputs a falling exponential; idexp provides a suitably normalised
function proportional to t · exp(−t) which first grows linearly, then decays
exponentially; and halfgauss outputs half a Gauss function, starting at its
maximum. All three of them have only one argument besides the cue: an input
which determines how fast the function decays to zero.

Further, it should be mentioned that piecewise linear envelopes (similar to
ADSR) can be generated by creating an ASCII file with the file name extension
.dat. It should contain two columns of numbers separated by spaces or tab
characters. The first value in every row will be interpreted as a time in seconds,
the second as the value of the envelope. The values will be linearly interpolated
between the times given. Such .dat files can be read by the file object, but
that only allows to output the envelope once. The oneshot object plays its file
every time it receives a non-zero trigger and can therefore be used to generate
envelopes from .dat files.

Applying an envelope to a sound is done by multiplying them. The sndobj
which does this is called mul (no surprise) and has exactly the same usage as
add. Its first argument is the number of sndobj’s to multiply, followed by the
objects.

17

5.2 Cues and ramps

The two most important sndobj’s for generating cues are at and cron.7 Both
have an offset as their first argument, which allows to shift the cues they generate
forwards or backwards in time. Both also have an array argument (though in the
case of cron, it can be replaced by NULL). These arrays differ in an important
way from the arrays we have encountered previously: These arrays contain
double precision floating-point values. The actual initialisation values can be
given as for single-precision arrays, but the array has to be declared differently.
Consider the following example of an array for at:

double atlist[]= { 0, 1, 0.5, 1, 0.75, 1, 1, 1, END };

The list contains pairs of values, concluded by END. The first value of each
pair is the time of the cue in seconds; the second is the cue value. at outputs
zero values except at the samples which are closest to the specified times, when
the given cue values are output. (Depending on the sampling rate, the cue times
may not hit one sample exactly, but each cue is guaranteed to be output unless
there are more of them than sample values.)

Though melodies are still beyond us, we can use at to generate a simple
rhythm:

double atlist[]= { 0, 1, 0.5, 1, 0.875, 1, 1, 1, END };

output= mul(2, sine(0, c(440), c(1)), expodecay(c(0.2), at(0, atlist)));

cron generates regular cues. Its parameters (interval) and (value) give the
interval between cues and their value, respectively. The array argument, if not
NULL, contains the times when a different value or no cue should be output.
It has the same format as the array passed to at: pairs of times and values,
concluded by END.

Another sndobj which can be used to generate regular cues is interleave.
It interleaves its <signal> input with a certain number of zero samples. If you
want to control precisely at which sample values non-zero cues occur, you can
feed the cue value into the <signal> input and give the exact number of zero
samples by which they will be separated.

So now we can generate cues — fine. To create a melody, we need more than
that. We also want to vary the tones’ frequencies. We cannot use at or cron
for that, because the waveform generators need a constant frequency input for
as long as the tone continues. The simplest way to achieve that is with the
ramp object. It has the same two arguments as at, but the format of its [list]
argument is different. It contains triplets of values concluded by END (actually,
END replaces the last value of the last triplet). Of each triplet, the first value
is a time in seconds, the second is the value which the output of ramp should
have at that time, and the third determines the kind of interpolation between
this time and the time of the next triplet. The last value of the last triplet is

7If you don’t get the pun, just ignore the peculiar names.

18

END because there is no next time to interpolate to. The interpolation may be
linear (symbolic value RAMP L), exponential (RAMP E), or the output value
can remain constant until the next time (RAMP C). With this knowledge, we
can generate a micro-melody in A minor:

double freqlist[]= { 0, 440, RAMP_C, 0.5, 528, RAMP_C, 1, 469.333, RAMP_C,
1.5, 440, END };

output= mul(2, sine(0, ramp(0, freqlist), c(1)),
expodecay(c(0.2), cron(0, 0.5, 1, NULL)));

Now, if you want to write a song, will you have to write tens of double
arrays several thousand entries in length which you have to take care to keep
consistent? Actually, no. Section 7.7 will show how to read scores from files in
certain formats. But the objects in this section are simpler, easier to understand,
and can still be useful for all kinds of tasks even if you use a score file, and were
therefore presented first.

5.3 Auxiliary triggered objects

In the last section we used the ramp object to provide a frequency to the sine
object which changed with each tone but remained constant during the tone.
In this section we will get to know objects which we could have used together
with at to achieve the same purpose. They are especially necessary when the
frequency (or another characteristic of a tone) is determined by a varying signal.
Consider the following “melody”:

output= mul(2, sine(0, linear(440, 110, sine(0.5, c(0.3125), c(1))), c(1)),
expodecay(c(0.2), cron(0, 0.4, 1, NULL)));

What we were trying to do was to change the frequency of the tone with the
second sine object — with the effect that we got some kind of siren punctuated
by cues. We need something to keep the frequency values fixed until the next
note starts.

This is the purpose of the flipflop object. It has two inputs — the cue and
the signal the values of which should be stored. Using this object, our melody
sounds much more like a melody (though still somewhat dissonant):

output= mul(2, sine(0, linear(440, 110, flipflop(cron(0, 0.4, 1, NULL),
sine(0.5, c(0.3125), c(1)))), c(1)),

expodecay(c(0.2), cron(0, 0.4, 1, NULL)));

Two objects which serve a similar purpose to flipflop are holdtrigger and
holdnon0. holdnon0 could have been used in the previous section to generate
a piecewise constant frequency signal from the output of at. holdtrigger is
useful when a cue value has to be present (= non-zero) for a fixed duration of
more than one sample value.

19

5.4 A humaniser

Computer-generated sounds can sound artificial, a problem which is often
mitigated by “humanising” some of the quantities which a computer otherwise
treats much more exactly than a human would. There is no “humaniser” in
sndsys — and yet there is. This is to say that there is no sndobj dedicated
to this task, but it is easily accomplished using sndobj’s we have already
encountered. Let us assume we want to “humanise” the precise frequency of
a sine, and that the frequency signal is denoted by frequency. To change the
frequency slightly in a random way, we can replace frequency by:

flipflop(cue, mul(2, frequency, linear(1, 0.01, gaussrand(0.3))))

cue is assumed to be the cue signal for the tone to which the frequency
applies. Similarly, the volume or other properties of tones can be humanised. It
is important to use the flipflop object here. If the frequency were continually
changed by a random contribution, this would be audible as noise. As we have
been programming it, it will be slightly off but remain constant over the tone.

Humanising the cue itself requires aslightly different approach. It is
accomplished by delaying the cue by a small random amount. The delay object
has a parameter fixing the maximum value the delay input can take, and the
delay and signal inputs. Its delay can also be negative. To humanise a precise
cue signal, replace it by the following:

delay(0.1, gaussrand(0.01), cue)

6 Miscellaneous sndobj’s

This section deals with objects which did not fit neatly into any of the previous
sections’ categories or are too advanced to be presented in the introductory
sections. The first subsection is about delay objects, which are useless on their
own but a requirement for complex processing. Multi-channel processing will
be introduced, which allows to create stereo sounds and are important for using
certain more advanced sndobj’s. Mixing follows naturally. sndsys’s way of
accessing your soundcard is presented, and for those with an up-to-date box,
multithreading capabilities are explained.

6.1 Delays

sndsys offers several objects which simply delay a signal by a certain time. Two
of them apply a constant delay: cdelay has a time parameter which determines
the delay, while sdelay has a parameter giving the number of samples by which
to delay the signal. In both cases, the delays may also be negative. The delay
objects simply read ahead by the requested time and discard the first samples
until they read far enough “into the future”.

The other two delay objects allow a variable delay given by an input. Because
the delayed data have to be stored somewhere, the maximally possible delay

20

value has to be given in a parameter. If the delay input exceeds this value, the
maximum value is used instead. delay has just three arguments — maximum
delay, delay input and signal input — while rdelay has an additional reset
input. Whenever it receives a non-zero value on the reset input, it acts as
though the delay line has been cleared and outputs zeros for the time of the
current delay.

6.2 Arithmetic and comparisons

In earlier sections, we have already learnt how to do the arithmetic operations
most frequently needed in sound processing: linear for scaling and linear
transformation, add for summation, and mul for multiplication.

The less common arithmetic operations can be performed with the sndobj
arithmetic. Though such operations should in the interest of efficiency be
implemented in C if used frequently or in large number, arithmetic allows to
play around with them without having to write a sndobj of one’s own. Its first
argument is a string containing one character defining the arithmetic operation
to perform. “+”, “−”, “ * ” and “/” are self-explanatory. “̂” takes the first
operand to the power of the second without changing its sign. The other three
are unary operators: “|” takes the modulus, “=” is the negation, and “\” yields
the inverse. Note that in C code, “\” has to be given as “\\”.

arithmetic has two inputs which provide the two operands. When
computing unary operations, the second operand is ignored and may be passed
as NULL. In the case of the inversion “\”, a second operand may be given, and is
used as a maximum output value. This is important when using this arithmetic
operation to compute a delay from a frequency. The length of the delay can
then be kept within limits.

arithmetic tries to react benevolently to nonsensical input, which often
cannot be entirely avoided. Divisions by zero yield the maximal floating-point
value with the correct sign, not infinity. Division of zero by zero repeats the
previous value. Powers with base zero result in the maximum if the exponent
is negative, zero otherwise.

A sndobj vaguely related to arithmetic is conditional, which selects one of
two inputs based on the comparison of two others. It has two inputs, of which
some will usually be the same. If the first input is greater than or equal to the
second, the third input is passed through to the output, otherwise the fourth.
This allows you to more complex decisions than just limiting the amplitude as
for example with clip.

6.3 Stereo and multi-channel processing

In the starting chapters, we have been generating sounds in mono, without
even caring about the number of channels. This may be acceptable for creating
sounds which can later be panned left or right, but for music mono is rather dead.
The good news is that you do not have much to learn. Most sndobj’s handle
stereo signals (or signals with even more channels) transparently, delivering as

21

many channels of output as you put in. In fact, if you applied the filters from
Section 4 to a wave file containing a song in stereo, you may have noticed that
the output was in stereo too, automagically.

Multiple channels are harder to handle for sndobj’s which combine inputs in
some way. Some sndobj’s, among them add, mul and arithmetic, output the
maximum number of channels of their inputs. The inputs having fewer channels
wrap around. This allows to multiply two stereo signals channel by channel, but
also allows to multiply a stereo sound with a common (mono) envelope. To find
out how a specific sndobj handles multiple channels, consult its documentation
(via objectdoc.pl) or, as a last resort, the source code.

How to create or take apart a multi-channel signal? The sndobj for
extracting a single channel is called ch. Its first argument is a constant
denoting the channel to extract. Channel numbers start at zero. Abbreviations
are available for the first four channels: c0, c1, c2 and c3. More complex
rearrangement of channels and generation of multi-channel signals can be done
with switchboard. Its first argument is a string giving the switching to be done
and is followed by a variable number of inputs. The string argument specifies
which channel of which input to output on each channel, for the first to the last
output channel, separated by spaces. The specification of one output channel
consists of the input number (starting at zero for the first input), optionally
followed by a dot and the channel number (also starting at zero). If the channel
number is not given, the first channel is used.

Two rather special sndobj’s which reduce the number of channels are chsum
and chavg. They compute the sum and the (arithmetic) average of all channels
of their input, respectively. Other sndobj’s manipulating channels are the
mixing objects presented in the following section.

6.4 Mixing and panning

The simplest mixing object has already been used in Section 4.5: mix2. Its
first input, <gate>, determines how each of the two other inputs is scaled. If
<gate> is 1 or above, only the first input is output, if it is ≤ 0, only the second.
(The idea is that <gate> is the coefficient of the first signal input, which it
precedes.) To crossfade from one signal to another, you can use a ramp as the
<gate> input:

sndobj *signal1, *signal2;
double faderamp[]={ 0, 1, RAMP_C, 11, 1, RAMP_L, 14, 0, END };

signal1= ...
signal2= ...
output= mix2(ramp(0, faderamp), signal1, signal2);

This code fragment cross-fades from signal1 to signal2 between 11 and 14
seconds into the song. The output of the ramp remains constant after the last
time given in faderamp, so only the second signal is played after 14 seconds.

22

Besides crossfading, a frequently used functionality is the creation of a stereo
signal from a mono sound. This is done with the sndobj panpot. The first
argument, a constant parameter, determines how the perceived direction of the
signal is created: by a difference in volume between the left and right channel
(0) or by a phase shift (1). For values between 0 and 1, both methods are
combined. The first input determines where the signal is panned. -1 pans it to
the left, 0 to the centre, 1 to the right and intermediate values in between.

A very general and powerful mixer is available in the mix object. It resembles
switchboard in that it can generate an arbitrary number of channels by
combining an arbitrary number of multi-channel inputs.8 Its usage is also quite
similar: Its first argument is a string which determines how the inputs are mixed
down to the output and is followed by the input signals. The mixing string can
have two different formats. The first gives a mixing specification independently
for each output channel, separated by semicolons. The second format prescribes
the same mixing for all output channels, wrapping input channels around if
necessary (the number of output channels is the maximum of the number of
the inputs’ channels). The mixing specifications consist of a sum of channel
numbers (first format) or input numbers (second format) optionally followed by
a scaling factor. Always remember that the scaling factor comes second — don’t
confuse it with the channel number which also looks like a decimal fraction.

If you wanted to use mix for panning voices of a song, you could write the
following:

output= mix("0.0*0.707 + 1.0*0.5 + 2.0*0.707 + 3.0*0.866 ;"
"0.0*0.707 + 1.0*0.866 + 2.0*0.707 + 3.0*0.5",
bass, drums, guitar, vocals);

Using mix for panning is not the most fitting of its uses, but it allows me
to demonstrate a couple of things. First, you can see that the parameter string
has been split over two lines. The C compiler allows that; it automatically
concatenates two strings which are separated only by white space, including
line breaks.

Now let’s have a look at the mixing specification string. It contains two
sums separated by the semicolon at the end of the part of the string which was
printed on the top line. The first sum describes the first channel of the output,
the second the second channel. It is the convention in wave files, to which the
output will finally be written, that the first channel is the left channel, so the
first sum defines the left-channel output. Each term in the sum is a product of
a channel in the notation input.channel, starting with input 0. I am assuming
here that all the inputs are single-channel signals, but nevertheless the “.0”
cannot be left out (as it could with switchboard).

The scaling factors after the channel numbers do not add up to 1 for the left
and right output channel. Why not? Because it is the sound intensity which is

8Actually, these numbers cannot be arbitrarily large. The number of inputs and the number
of channels per input and of output channels are limited by the constant PLENTY which is
defined in sndsys.h as 20.

23

divided up, not the amplitude. The intensity is the square of the amplitude, so
the squares of the scaling factors of each input add to 1. There was no need to
take care of that when using panpot, because it does it automatically. Now we
have had a good look at the details, we can say what the above code fragment
does: The bass and guitar are panned to the centre, while the drums are panned
to the right and the vocals to the left.

When all is said and done, you would probably prefer to use panpot for
panning each voice and add their stereo signals up with add. This also allows
to change a voice’s location dynamically, as the location is an input of panpot.

6.5 Speaker and microphone

So here comes the part you’ve been waiting for all along: How to make real noise,
pardon, music, with sndsys. The sndobj’s dealing with microphone input and
speaker output currently use the Open Sound System API. If you use ALSA,
you will also need ALSA’s OSS emulation. If you have multiple sound cards,
you may have to change the name of the DSP device in the function dspdesc(),
which is at the bottom of sndsys.c. It is “/dev/dsp” by default; to use the
second sound card, you may have to change it to “/dev/dsp1” or similar.

The sndobj playing sound over your system’s speaker is called oss. It has
only one input — the signal to play — and a parameter which allows to adjust
the volume. If the signal has several channels, the first is played on the left
channel of the soundcard, the second on the right, and the others (if present)
are ignored. The microphone object is similarly spartan, having a parameter for
selecting line input rather than microphone and a parameter for the recording
volume.

Rather than code examples, this section comes with actual example programs
which are part of the sndsys distribution. The first, and perhaps the nicest, is
piano. It is compiled and started the following way (from a shell prompt in the
sndsys directory):

$ make piano
$./piano

A small X window with a graphic of a keyboard will pop up and allow you
to play piano on your computer keyboard when in focus. The keys are coloured
white or black according to which piano keys they represent. Shift keys hold
the tone after you release the corresponding key; CapsLock saves you holding
Shift down. You quit with the Escape key.

Though nice, piano doesn’t lend itself well to understanding soundcard
access with sndsys — too much of the code is dedicated to X programming.
distort is a much simpler program. It reads a signal from the microphone
input of your soundcard, distorts it by clipping, and outputs it again over the
speaker. Have a look at distort.c to see mike and oss in use, and feel free to
play around with the clipping parameters or replace the distortion by a filter or
a reverberation.

24

A sndobj which can come in useful occasionally is voiceact which is used in
the vrec program. It discards selected parts of its input signal and can therefore
be used to realise voice-activated recording, as in rec. Its first input determines
whether the (second) signal input is output; if not, the input is discarded, that is
the program may spend a long time in voiceact waiting for output to continue.
Unlike other sound objects, voiceact does not always generate an output value
for every input value. The way sndsys is designed, using such sndobj’s requires
some caution. See Section 9 or README.SNDSYS for more details on this. To
see voiceact in action, have a look at vrec.c, and use objectdoc.pl to display
its documentation.

6.6 Threads

Unlike other sound processing programs, sndsys does not apply processing steps
to buffers of sound data, but passes each sample value down the processing
chain separately. Samples are buffered where necessary for the operation of
sndobj’s, but the basic idea is that data stream through the successive stages
of the calculation. This makes it especially easy to split computations between
different processors, cores or even computers.

The only sndobj which implements this at present is sndthread, which
starts a new thread for computing its input (and the input’s inputs and so
on). On multi-core and multi-processor systems, the operating system will
usually run the new thread on a different core or processor from the main
thread, distributing your calculations over two or several of them. sndthread
just copies the data received from its input and handles the communication
between threads. Besides its input, it has a parameter which gives the size of
its buffer for the data from the other thread. If it is larger than 1, sndthread
will read some values in advance, which helps to balance variations in processor
usage. I usually set it to 1024.

What sndthread does not do is automatically determine where your sndsys
program should best be split between processors. You have to decide that
yourself. Start by dividing it into roughly equal parts in terms of the number of
sndobj’s and watch CPU usage with the programs xosview or top. If there is a
significant difference, one part of your program takes up much more computation
time than the other, and you should insert the sndthread object at a different
point. Note that you cannot insert a sndthread just anywhere; it has to be
the only connection between the sndobj’s connected to its input and those to
which its output is passed on. For instance consider the variable thefile which
we declared in Section 4.5. If you replaced one of the two places in which it is
used by sndthread(1024, thefile), the other would still try to obtain data
from a sndobj which would now be part of the other thread, creating chaos.
The correct solution in such cases is to insert sndthread into the assignment
of the variable, in this case: thefile= sndthread(1024, file("song.wav",
NULL));.

25

6.7 A curiosity: Verhulst dynamics

To conclude this rather dull chapter, I will present a funny example of what
you can abuse sndsys to do. The Verhulst process is a classic in the dynamics
of iterative function systems. It consists of iteratively computing c · x · (1− x),
the result becoming the new x. Depending on the value of the parameter c, x
may converge to a constant, oscillate between the same 2, 4, or more values,
or become entirely chaotic. The sndobj bifurcation outputs the x values
of a cycle corresponding to c given by its input. By hooking it up to a sine
generator and varying c, one can actually hear how the limit value becomes a
cycle of successively larger length.

Put the following lines into our example framework program frame.c:

double bifurcramp[]= {0, 2.8, RAMP_L, 5, 3.3, RAMP_L, 10, 3.48, RAMP_L,
15, 3.53, RAMP_L, 20, 3.7, END };

output= mul(2, c0(smoothstep(SMST_LINEAR, 0.5, c(0.005),
expodecay(c(0.1), cron(0, 0.25, 1, NULL)))),

sine(0.0, linear(440, 440,
bifurcation(0.25, ramp(0.0, bifurcramp))), c(1)));

duration= 20.0;

After compiling and running the program, you can hear how a slowly
changing single tone becomes two alternating tones, then four, and finally a
chaotic succession of tones. This is how the limit of the Verhulst process changes
as you change its parameter c along the ramp in the program.

Funny melody or no, let’s still have a brief look at the code. The double-
type array tells the ramp object how the Verhulst parameter should change with
time. The first two line of the assignment to the output variable contain the
first factor of the multiplication, which provides the envelope for the tones.
The output of an expodecay object triggered every quarter of a second is fed
through a smoothstep object, which helps to prevent clicks and is further
explained in Section 7.2. The next two lines generate a sine wave with a
frequency corresponding to an x value in the limit cycle of the Verhulst process.
bifurcation outputs a number between 0 and 1, which is then scaled to give
a frequency between 440 and 880 Hz. Its parameter input comes from a ramp
which is designed to increase the parameter more slowly as bifurcations become
more frequent.

7 Advanced sound synthesis

This section presents sound generation possibilities of sndsys which go beyond
simple waveform generators and filters. Some skill in C programming, or the
willingness to acquire it, will be required at least in Sections 7.1 and 7.7. The
code examples will be more complex than previously, and sometimes incomplete
and template-like, leaving you to fill in the blanks. Due to the great complexity

26

of the objects and methods presented in this section, the only way to realise
their potential is to experiment with them at length.

7.1 Waveforms

We have already seen above how to use a wave file in sndsys. In addition, in
Section 5.1, the oneshot object was briefly mentioned. These two are the basic
sndobj’s for generating an arbitrary waveform and will be explained in depth
now, before we move on to something more advanced.

The file object can do much more than just play wave files. One of its
features is that it repeats its file over and over again. While this may not seem
overly sensible for a wave file containing a song, it opens up the possibility
of storing a waveform in a wave file and using file as a waveform generator.
file’s optional input, together with a constant resampling factor, can be used
to set the frequency. Another constant parameter can be used to set the
starting phase if desired (similarly as with the sine object). These additional
constants work as follows: The file name argument of file is replaced by a
string containing the characters ‘*’ and/or ‘+’ followed by the actual file name.
The numerical constants then follow the frequency input in the argument list.
Because the frequency input acts as a transposition factor with wave files, rather
than an actual frequency, the resampling factor should be set to the inverse of
the frequency of the waveform stored in the wave file. If it contains just one
period, this is equivalent to its length in seconds. So if you have a very detailed
waveform sampled with 88.2 kHz, which is 0.5 seconds long, you play it with
the frequency freq by coding the following: (Differences in the sampling rate
are automatically recognised and compensated by file.)

file("*waveform.wav", freq, 0.5)

But file can also read waveforms in different formats. Two plain text
formats are available: .asc files contain successive sample values, one to each
line. .dat files contain two values per text line, a time in seconds and a sample
value. The times need not be equidistant, but have to be ascending, and the last
value has to equal the first. In both cases, the sample values are floating-point
values. As both .asc and .dat files are assumed to contain single waveforms,
file’s input acts as a frequency and the constant resampling factor need not
be used.

Finally, file can also play waveforms defined by polylines drawn with
xfig [xfig]. This is a bit of a joke, but allows to create “zigzag” waveforms
with lots of straight lines quickly. The polyline should be drawn from left to
right, and the vertical coordinate of the last point should match that of the first
(otherwise it will be replaced by that value). The vertical coordinate values will
be scaled to fill the interval [−1, 1].

oneshot and rapidfire are two objects which play a file only once at a time,
in response to a cue input. They have two primary applications: drum sounds
and envelopes. Drum sounds can be recorded or generated, stored in a wave file,

27

and played back with one of these sndobj’s. The possibility to define an envelope
in a .dat file was already mentioned in Section 5.1. (Note that the role of their
input <speed> is different from that of file. Consult their documentation if
you consider using that feature.) oneshot and rapidfire differ in how they
react to triggers while a playback is still in progress. oneshot will abort and
restart the playback, while rapidfire is able to perform several playbacks in
parallel and add them up. One could say that oneshot simulates a single drum
being beaten repeatedly, and rapidfire several drums being beaten in turn.

The sndobj’s which have been presented so far are only the simplest case
of waveform synthesis. The sound real-life instruments changes depending on
pitch, volume, on how they are played, and to some extent on random chance.
The sndobj multiwave is designed with this in mind. It assumes you have stored
several waveforms of an instrument stored in .asc files and interpolates linearly
between them depending on its inputs. This allows you to generate waveforms
which change according to several different factors.

To handle this multitude, however, a little bit of theory is required. Ideally,
you should have a waveform available for several pitches, several volumes, several
values of other parameters which you may have in mind, and all combinations
of them. You can obtain such waveforms from instrument sound samples, for
instance those provided free by the University of Iowa [iow]. multiwave obtains
the value of the parameters on which the waveform depends from its inputs. To
obtain the right waveform, it interpolates linearly between the given waveforms,
one parameter at a time.

How many and what kind of parameters the waveform depends on is what
you tell multiwave in its many parameters. Use objectdoc.pl to display its
documentation. Its first argument, (dimension), is the number of parameters,
the others which are not inputs are arrays of different types. The first,
[indextypes], contains two integer values for each waveform parameter, its type
and the number of the input providing its value. The other two, [ascfiles] and
[positions], describe the .asc waveform files. The former contains the names
of those files, followed by an additional entry which is the empty string "" or
NULL, to tell multiwave where the list ends. The latter defines which sets of
parameter values the waveforms correspond to. It contains all parameter values
for all files, so its length is the number of parameters multiplied with the number
of files.

multiwave’s constant arguments describing the waveforms and how to
interpolate them are followed by its inputs. First is the frequency input, which
is always required and which is used to decide how “fast” to play the waveform.
If one of the entries in [indextypes] has type MWTYPE FREQ, it will also be used
for interpolation. After the frequency input follow the inputs corresponding
to the other parameters, starting with the one identified as input index 0 in
[indextypes].

As you will have noticed, the use of multiwave requires some more advanced
C programming skills as well as some spacial imagination of multi-dimensional
parameter spaces. I regret to say that I have not yet created an example, which
would require a largish number of waveform files. I have used multiwave in

28

the little piece “Capricious Bass” which is available in OGG Vorbis format on
my web site, and extracted multiple waveforms for plucked bass and saxophone
from the University of Iowa’s instrument samples for the purpose [iow]. But at
the moment I do not yet want to make them public.

7.2 Fix the clicks

If you have played around a bit with the envelope shapers expodecay and
halfgauss and with drum sounds using oneshot, you will have noticed that
they can cause nasty clicks at some or every cue. In the case of the envelope
shapers, this is due to the shaped wave signal being suddenly switched on when
a cue occurs. If you have been shaping sine waves with zeros approximately
coinciding with the cues, you will have heard nothing unusual, but one you start
creating sounds with random elements in them, this will become a problem.

The object to address the clicks due to envelopes is smoothstep. It does what
its name suggests. It smoothes steps in its input signal by replacing them with
slopes or part of a sine wave, depending on its mode of operation. smoothstep
compares successive sample values to determine whether a “step” occurred; to
decide what constitutes a “step”, you have to give it the minimum height of a
step to be corrected. The right value to choose depends on the context in which
it is being used. The usual procedure is to choose a largish value of 0.1 or so
and decrease it if necessary until the clicks are gone. A second input besides the
signal to smooth is the time to take for smoothing each step, which is usually
chose as a constant.

smoothstep doubles the number of channels of a signal. Every other output
channel gives the difference between the original signal and the smoothed
signal. This can be used to implement “attack” sounds which occur when an
instrument’s tone starts. If you do not want these channels, you have to select
the one (or ones) you want.

A typical usage of smoothstep is the following:

c0(smoothstep(SMST_LINEAR, 0.05, c(0.01), envelope))

It may have occurred to you that smoothing an envelope could have been
achieved much easier with a simple lowpass. That is true, but smoothstep acts
differently and has other uses. It only acts locally, not affecting the signal at all
when there are no steps. This means it can also be used on signals which are
not pure envelopes but already contain the tone. I have also used it to smooth
transitions between pitches output by score objects (see Section 7.7), which an
instrument couldn’t handle. Advanced modes of operation allow it to smooth
only upward or downward steps. See its documentation for details.

smoothstep could also be used to smother clicks at the start of a waveform
played with oneshot. But there is a simpler option: smoothstart. Its only
parameter is the number of samples it is allowed to modify before a tone starts.
It constructs a third-order polynomial which matches both the silence before
the tone and the first two samples played. As it reacts to the transition from

29

absolute silence to a sound, it is best used to modify a saved sample before it
is used with oneshot. Otherwise the start of the sample may not be recognised
when several cues follow closely on each other.

7.3 Fractional Brownian motion — a noise generator

The random number generators presented in Section 3.3 are nice, but they go
only so far. You can generate white noise with them, which you can then filter
to give noise with a certain frequency distribution. While useful in many cases,
this does not generate noise which sounds “natural”.

Natural noise often obeys scaling laws associated with fractals. This allows
it to be generated by the following recursive procedure. It starts with complete
silence, which appears as a straight horizontal line when you plot the sound
signal. Imagine an elastic string fastened to two pins at the left and right end of
the time interval you view. Now you take the string at regular intervals, move
it up or down from the horizontal line, and fix it with further pins. Then you
shorten the interval by a factor and do the same thing again. And again. And so
on. The amount by which you move the string at every step is random but also
diminishes, so at the end you get a signal which moves up and down randomly,
but is much more correlated than white noise. This way of constructing a fractal,
and some mathematical implications, are well described in a book about fractal
images [sfi].

The sndobj fbm generates noise using the method explained above. It has
three inputs which determine its output (and a reset input which may be passed
as NULL and is rarely used). The first, <lacunarity> is the factor by which the
interval used at successive steps of the iteration is shrunk. The second, simply
called <H>, is the exponent of the power law relating the size of the interval
with the size of the displacement. It determines the fractal dimension of the
resulting curve, which is 2− 2 H.

For non-mathematicians: <lacunarity> determines how “full” the noise
sounds. Small lacunarity values cause the result to sound “thin”, while large
values (up to the maximum of 0.9) give a “full” sound. <H> determines the
frequencies present in the noise. Small values cause all frequencies to be equally
prevalent and generate nearly (but not quite) white noise. Large values, up to
but smaller than 1, cause low frequencies to predominate. fbm’s third input is
a cutoff frequency which sets the lowest frequency the noise contains.

The documentation of fbm contains several example parameter values with
descriptions. Here, I will give a code example only for the last and most
complicated, which involves varying H and sounds somewhat like a large heap
of gravel sliding off a metal surface. H will be varied with a sine, and a ramp
will be used to fade the sound in and out and adjust the volume.

double slideramp[]= { 0, 0, RAMP_L, 0.1, 1, RAMP_L, 1.2, 1, RAMP_L,
1.4, 0.7, RAMP_L, 1.5, 0, END };

output= arithmetic("*", fbm(c(0.8), linear(0.9, -0.9,

30

sine(0.25, c(0.14), c(1))), c(150), NULL), ramp(0.0, slideramp));
duration= 1.5;

fbm’s immediate purpose is to generate realistic noise, but its uses are many.
It can be used wherever a random number generator is required and will often
yield more realistic sounds than if flatrand had been used. One funny effect
occurs when fbm is used for phase modulation:

output= delay(1.0, linear(0.0, 0.00005, fbm(c(0.5), c(0.8), c(600), NULL)),
sine(0.0, c(600), c(0.8)));

This generates a tone which is clearly noisy, but which appears quite smooth
in a waveform editor. Due to the highly correlated nature of the noise, the
changes in phase cause a barely perceivable ripple in the shape of the sine. The
human ear, however, is not deceived.

7.4 More noise and randomised cues

The sndobj which will be presented in this section resembles fbm in that it is
based on the idea of self-similarity which also underlie fractals. It was inspired
by investigations of a block which is only just sliding on a vibrating sloped
surface. Such a block will slide down in jerks, with the strength of the jerks
correlated with their frequency through a power law.

The slide object generates one-sample peaks at regular intervals, with
heights which depend on the interval. Like fbm, slide repeats this for
successively smaller intervals (and peak heights). Its first two inputs, <minfreq>
and <maxfreq>, give the inverse of the largest and smallest interval size, and the
<lacunarity> input determines the factor between the interval sizes applied at
successive steps. The <exponent> input determines how the height of the peaks
depends on the interval size. For an exponent of 0, the pulse height will remain
constant. A positive exponent will cause the height to decrease for a smaller
interval, making smaller peaks more frequent. The last input, <meandev>,
allows a randomisation of both the intervals and the pulse heights. It should be
smaller than 1, and larger values cause a stronger randomisation while 0 causes
none at all.

Unlike fbm, slide is not primarily intended to be listened to directly.
However, its output can be used to simulate crackling fire and similar noises.
Here is a simple example:

output= linear(0, 0.7, slide(c(10), c(500), c(0.7), c(1.5), c(0.3)));

slide can also be used to provide random cues. Many natural processes —
rain drumming on a roof, large numbers of stones or beads hitting a plate —
are composed of single events which occur with varying intensity. slide can be
used as a trigger for sounds of one raindrop or one bead hitting to reproduce
the process as a whole. Another application is to provide more-or-less regular
but randomised reflections for a reverberator. It is used internally by convrev
for that purpose.

31

7.5 Waveform manipulations

This section covers three sndobj’s which allow you to manipulate the waveform
of any signal. They are more likely to be useful as an effect; for synthesis, you
could probably generate the right waveform in the first place, though perhaps
not in all cases. I have to admit I have not worked very much with these objects
myself, so they may have applications which I do not know of.

reshape replaces the shape of each “half-wave” of a signal with that of a
different signal. A “half-wave” is half a waveform. The precise definition of this
term depends on reshape’s mode of operation. If it is RESHAPE SLOPE, each
half-wave extends from one (local) minimum or maximum of the signal to the
next maximum or minimum. For the other modes, it extends from one zero-
crossing to the next. (If your signal does not touch the zero line, you should shift
it with linear before feeding it into reshape.) reshape scales the half-waves
of its <shapesig> input so that their size matches the half-waves of the signal,
and substitutes them.

reshape is an “asynchronous” sndobj, because its <shapesig> input may
have to provide more or fewer samples than it outputs in time interval. For this
reason the <shapesig> and <signal> inputs should not have anything to do
with each other. If there is a signal on which both of them depend, you should
do the exact opposite of what I recommended in Section 4.5: The signal should
be reproduced for both inputs, rather than assigning it to a variable used with
them both. Then they will be sufficiently independent for reshape to work.

The following example uses reshape in its operation mode RESHAPE SLOPE
to replace a song’s waveforms with sine half-waves. This creates a fine distortion
which neither leaves parts of the signal unaffected nor becomes too nasty. (How
exactly it sounds may depend on the wave file you apply it to.)

output= reshape(1.0, RESHAPE_SLOPE, sine(0.0, c(440), c(1)),
file("song.wav", NULL));

The second sndobj affecting waveforms, repeathw, works on just one signal.
Rather than modifying the waveforms, it repeats every half-wave of the signal
several times. Unlike reshape, repeathw always defines a half-wave as the part
of the signal between two zero-crossings. If your signal has fewer zero-crossings
than you would like, applying dcblock or a different highpass may help.

Obviously, the output sound of repeathw will take several times as long
to play as the input. Besides, repeathw causes strange effects which differ
depending on its parameter inputs. After its constant parameter, which sets
a maximum length for the half-waves, two parameter inputs follow before the
signal input. The first determines the number of repetitions for the half-waves.
(It is always rounded to an integer.) The second allows repeating sets of several
half-waves rather than each on its own.

The effect of repeathw is so strong that it must count more as a curiosity
than as a serious tool for generating smooth sounds. As described in its
documentation (use objectdoc.pl), it may generate bubbling sounds or simply
slow down its input signal (though unfortunately not without artifacts). Its

32

applications range from generating outright weird sounds to encryption of sound
data - though admittedly there is currently no corresponding decryption sndobj.
Have a look at the example parameter values given in the documentation and
apply repeathw to a wave file of a song!

The third object modifying a signal’s half-waves is called avghw and averages
the shapes of a number of successive half-waves. Unlike the two others, it is not
asynchronous, meaning that it reads a sample from its input for every sample
it outputs. This sndobj is a bit of a disappointment — it simply generates a
distortion. I had hoped for something more interesting when I programmed it,
but all the same I wanted to mention it here.

7.6 A string model — backfeed loops

So far we have learnt that objects can be arranged in lines (when all of them
have only one input) or trees (when one or several of them have more than
one input). This section introduces a new topology: loops. Because creating
each sndobj requires references to its inputs, loops are created in two stages.
When building up a processing chain of objects, two objects defloop and loop
are inserted. Later a function closeloops() has to be called which replaces
the references to each loop object with the input of the corresponding defloop
object. If you use the function sndexecute() to execute your sndsys program,
you need not perform the second step, as sndexecute() calls closeloops().

Both defloop and loop have arguments ”name” and (id) which denote a
specific loop. (The integer (id) makes it easier to generate a series of loops; it
would be harder to increment a string of characters.) As its third argument,
defloop has the signal which is to be used instead of the corresponding loop
object. The loop object takes the number of channels as its third argument.
This is necessary when the sndobj of which it is an input needs to know the
number of channels of its input.

A simple example for a backfeed loop is provided by programming the
Karplus-Strong string model using sndsys. This model is used in the example
program model.c to produce a single tone. The code looks like this:

double trigger0[]= { 0.0, 1, END };

output= defloop("karplus-strong", 1, cdelay(1.0/440,
add(2, at(0.0, trigger0), _12_0pole(1, 0.5, 0.5, 0.0,
loop("karplus-strong", 1, 1)))));

The defloop and loop objects feed the output of the delay back into the
12 0pole filter. This filter is a low-level filter object which has the filter
coefficients as its argument and is here used as a one-zero filter which averages
two successive samples. The remaining object is the add which adds up the
backfeed signal and the excitation, the plucking of the string provided by the
at object.9

9Since writing that example, I have created two special-purpose sndobj’s which facilitate

33

7.7 Scores and instruments

Finally we are coming to the features of sndsys which allow you to compose
and play tunes. As in many other parts of sndsys, the emphasis was on
power and versatility rather than suitability for casual use. Unlike for instance
Sapphire [sap], sndsys does not distinguish between scores and other processing
elements — all output one or more channels of data. Instruments again
are not artificially distinguished from other sndobj’s — they just happen to
understand the output of score objects. This brings about much freedom and
also responsibility — to some extent it is up to you how scores tell instruments
what to do, and it is up to you to ensure they understand each other.

7.7.1 abc

sndsys currently has two different objects to interpret score files. Let us first
have a look at the score format which gives you less latitude. The sndobj’s
name is abc, which parses the music notation language abc [abc]. Describing
all of abc is beyond the scope of this tutorial — but then, all of abc is not
actually implemented in the abc object. You are encouraged to read about abc
on its home page [abc], become enthusiastic, read the documentation of the abc
object, and become disappointed. Nevertheless, here is a brief overview:

abc files contain one or several tunes, each of which is composed of a header
and the actual music notation. The header consists of lines starting with a
single letter followed by a colon. It gives basic information about the song —
its title (“T:song”), metre (for example “M:4/4”), tempo (“Q:1/4=120”), key
(“K:C”) and unit note length (“L:1/4”). sndsys’s abc object interprets only six
header fields, the five just mentioned and a field (“u:”) defining accents. For the
purpose of playing tunes, the most important are Q:, K: and L:. Unlike some
other programs interpreting abc files, sndsys assumes an abc file to contain only
one tune. To select one of several melodies from the same file, you can only use
the non-standard V: (voice) field, which has a number as its value which is a
parameter of the abc object.

The header is followed by the notated music itself. Notes are represented
by the letters “a” to “g”, with the octave determined by capitalisation and
appended puctuation (a comma for lowering, an apostrophe or several for raising
by an or several octaves). The note length is proportional to the unit note length
given in the L: header field. Notes of different lengths can have a factor appended
to them which can be an integer or a fraction of integers (for instance “3/4”).
In the latter case, the numerator can be omitted if it is one. Simply appending
a slash “/” divides the note length by two, which can be repeated several times.
Rests are denoted by “z” with the same syntax. More advanced features in a
nutshell: chords are notated as several notes between square brackets; bars are
delimited by vertical bars “|”; ties are notated with hyphens or by enclosing

programming the Karplus-Strong model. karplusfilt implements the zero filter and allows
an additional decay and a negation for generating drum sounds. stringfeedback replaces the
add object and has the additional feature of being able to initialise the delay line.

34

notes in parentheses; dynamics marks and special accents are given as text
enclosed in exclamation marks preceding the (first) note they apply to; staccato
is notated by a “.” preceding the note.

Now you have a basic grasp of the syntax of abc files, let us come to the
really important things. How does the abc object output the data fromteh abc
file, and how can you write instruments which play a tune using its output?
abc has at least three output channels. The first channel delivers a cue at the
start of each note. The second channel contains the amplitude of the note. The
remaining channels contain the frequency or frequencies of the note or of all
notes in the chord.

How does abc know which dynamics signs correspond to which amplitudes?
Easy, you tell it. The same applies to the cue values which depend on which
accent(s), if any, are set on the note. This information is contained in the
abcplayopts struct a pointer to which is passed to abc. The struct element
mfvolume is the amplitude which is output for mezzoforte notes. Forte and
piano notes differ by the factor fortefactor or 1/fortefactor, respectively.
Fortissimo differs by two fortefactors and so on. The amplitude channel of
abc also contains the information of when to end a note: it will fall to zero at
that point. Which proportion of the nominal note length the tone will be held
is determined by the struct members len, stacclen and tenutolen, depending
on whether and which accent is present. The value of the cues which abc
delivers are given by cue (normal notes), stacccue (dotted, “staccato” notes),
legatocue (the second or later of a group of tied notes) and legstacccue
(dotted tied notes). If the element endcue is non-zero, a cue is also sent at the
end of each tone.

Further members of the abcplayopts struct are: maxchord gives the
maximum number of notes in a chord and thereby determines the number of
output channels. If jazzynotes is non-zero, it causes the length ratio of broken
rhythms to be 2:1 rather than 3:1. silentfreq determines whether the value of
the frequency channel(s) remains the same after the end of a note (1) or is set to 1
(0). The element transposefactor gives a factor the frequencies are multiplied
with — instant transposition. Finally, two arrays are part of the abcplayopts
structure. Their entries correspond to each other. accentstring[] contains
accent names including the exclamation marks by which they are limited, and
accentcue[] the corresponding cues to be output for such notes. If the accent
is negative, the corresponding positive value is added to the usual cue instead
of replacing it.

The simplest kind of instrument playing the output of abc would just ignore
the cue channel. It would simply generate a tone with the requested amplitude
and frequency and work somewhat like this:

sndobj *score, *freq, *vol;

score= abc(.....);
vol= c0(smoothstep(SMST_LINEAR, 0.05, c(0.003), c1(score)));
freq= c2(score);

35

output= sine(0, freq, vol);

The next most complicated possibility is suitable for simulating a plucked
string instrument. Here we will all but ignore the volume and only multiply it
with the cue, which we feed into an envelope generator:

sndobj *score, *freq, *vol;

score= abc(.....);
vol= c0(smoothstep(SMST_LINEAR, 0.05, c(0.003),

expodecay(c(0.2), mul(2, c0(score), c1(score)))));
freq= c2(score);
output= sine(0, freq, vol);

A more complicated type of instrument would combine both approaches.
The tone itself could be generated as in the first example, while an “attack”
noise could be prompted by the cue and added to the tone. The attack noise
would then be influenced by a note’s accents (via the cue value) while the actual
tone remained the same. Both would be influenced by the volume derived from
dynamics signs, possibly by modifying the sound using a multiwave.

An example for an abc file is contained in the sndsys distribution in
melody2.abc, which is read by model2.c. The instrument used in this source file
is the Karplus-Strong string model, which is controlled similarly to our second
example above.

7.7.2 xyz

The second score object which is currently implemented is called xyz, which
is a pun referring to abc. Its basic idea is reading a comma-separated list
of numerical values from an external file and delivering those values on its
output channels. But it can do more than that: Cue values can be generated,
frequencies can be notated similarly to abc pitches, prefactors can be applied
to output channels, and bar lengths are enforced as in abc. xyz was created to
allow more flexible control of instruments without having to encode too much
information in obscure accents, as would have to be done in abc.

xyz has only two arguments, the .xyz file name and the name of the voice.
It can do without the many settings which are delivered to the abc object in
the abcplayopts structure, because such information is directly embedded in
the .xyz score file. This file contains one or several voices which consist of their
name followed by the voice’s notes enclosed in curly braces.

The notes for each voice are organised in rows of comma-separated values.
These are not necessarily equivalent to text lines — xyz is not a line-oriented
format. Each row is concluded by a semicolon, a vertical bar, or a colon. A
vertical bar marks the end of a bar, and the end of every other note or rest is
denoted by a semicolon. The colon ends the first row which defines the type of
each column of numbers. “Normal” numerical columns do not require a type
keyword in the top row; their place in the first row may be empty. Other column

36

types are the following: “length” denotes the column giving the note length in
seconds. This column has to be present.10 The type keyword “net” denotes the
column (if present) which contains the proportion of the note length for which
the tone is to be played. It corresponds to the len element of the abcplayopts
structure for abc. “cue” columns deliver cues; the value given in that column
is output only once, followed by all zeros. Finally, “abc” columns allow to give
a frequency by an abc note pitch. The syntax is slightly modified: The “,”
lowering the pitch by an octave is replaced by a “.”, and the apostrohpe “ ’ ” is
replaced by a backtick “ ‘ ”.

All column type designations except “length” and “net” can be optionally
followed by a factor, the word “mute” and a further number. The factor is
multiplied with all numbers in that column. The mute value is output on
the corresponding output channel when a note has ended (as defined by the
“net” column) or during rests. The “length” keyword can be followed by a unit
length, by which all note lengths will be multiplied, and the number of unit
notes forming a bar. If the bar length is given, the length of each bar will be
checked and a warning will be printed if the length deviates.

After so much theory, let us now look at a practical example. The following
excerpt of an xyz file shows the first rows of one voice:

voice1
{
length 0.5 4, net, abc 1.189, 1 mute 0:
2, 0.8, a, 1;
0.5, 1, c, 0.5;
0.5, , d, ;
0.5, , e; // no typo!
0.5, , d, |
4, 0.8, c‘, |
//

}

First, a look at the top row. The note length is given in the first column,
with a unit note half a second long and four unit notes to a bar. It is up to you
which notated note length you associate with the unit note. In this case one
would probably interpret it as a quarter, and the metre as common time. The
following column gives the actual length of a tone compared to the nominal note
length. The third column is the pitch in abc notation, and the last column is an
ordinary numerical column giving the amplitude. The pitch is transposed by a
minor third upwards, which gives a factor of exp(−3 · log(2)/12) ≈ 0.841. The
last column has prefactor 1 and shall be output as 0 when the tone is muted.
This gives us an output channel which represents the correct amplitude, even
for gaps between notes and for rests.

10If it is not there, xyz will arbitrarily interpret the first column as the note length column,
which is usually not a good idea.

37

Let us now try to read the melody. According to the first row the first note
is two unit notes long. Assuming the unit note is a quarter, this is a half note.
The following four notes are then eighth notes and conclude the first bar. The
last note of our excerpt is a whole note filling the second bar. A look at the
third column reveals the melody: The first note is one octave below the standard
pitch, therefore has a frequency of 220 Hz, and is called A3 in piano notation.
The following eighths live near the bottom of the same octave, and the final
whole note is a middle C.

Now have a look at the second column. For the first and last note, the
“net” length is smaller than one, meaning that they are separated from the
respective following note. The first eighth note has a net length of 1, while
for the othe three it is not specified. This causes xyz to repeat the previous
value and give them, too, a net length of 1. This value causes no pause between
the eighth notes and therefore causes them to be played legato. The fourth
column gives the notes’ volume. If we assume the value 1 for the first note to be
mezzoforte, the other notes are piano or so. Again, the value is left out where
it remains constant. In the fourth note, even the comma is left out and the row
is ended prematurely. This is allowed and causes all omitted columns to keep
their previous values.

Finally, a speciality of xyz files is that xyz applies the C preprocessor to
them.11 This allows you to use C comments in them. The example above shows
two single-line comments starting with “//”, but the longer form delimited
with “/*” and “*/” is also allowed. The preprocessor also allows you to define
constants which you can use in your scores. For instance, you could have written
the above excerpt like this:

#define mf 1.0
#define p 0.5

voice1
{
length 0.5 4, net, abc 1.189, 1 mute 0:
2, 0.8, a, mf;
0.5, 1, c, p;
0.5, , d, p;
0.5, , e, p;
0.5, , d, p|
4, 0.8, c‘, p|

}

If you use this feature in the future, beware of defining a constant f for forte!
The preprocessor is a dumb program and will also replace f notes in the abc
columns with the numerical value. Better call forte ft or similar. If you are

11That means that the preprocessor has to be installed and available with the command
cpp on a system where you use a compiled sndsys program which uses xyz, not only where
yo compile it.

38

getting strange error messages from xyz and suspect the preprocessor is messing
things up, look at the file /tmp/name.xyz.cpp. This is where the xyz object has
the C preprocessor dump its output and what itself subsequently parses. The
#define directive also lets you abbreviate riffs or parts of a melody. #include
allows to include other xyz files. See the documentation of your C preprocessor
for details.

How do you play an xyz file? Here is a short example program. (As before,
it is a fragment to be inserted into frame.c.) It assumes that you have written
the short xyz file from above to frame.xyz.

sndobj *score, *freq, *vol;

score= xyz("frame.xyz", "voice1");
freq= c0(score);
vol= c0(smoothstep(SMST_LINEAR, 0.05, c(0.003),

linear(0, 0.3, mul(2, invA(freq), c1(score)))));
output= sine(0, freq, vol);
duration= 4.0;

The length and net length columns are not output by xyz, so the first output
channel is the frequency. The second channel contains the amplitude. It is
scaled and smoothed before being fed into the sine generator. The only sndobj
we have not seen before is invA. It outputs the inverse of the A-weighting for
the frequency which is its argument and is used to adjust the amplitude so that
tones of different pitches will sound equally loud.12

8 Wavelets

This section is about using wavelet transforms to generate and modify sounds,
and the objects sndsys provides for this purpose. Wavelet transforms are an
advanced topic of which we will only touch the surface. But even the bits we
will need, and their implementation in sndsys, are not easy. If the explanations
bore you, don’t hesitate to skip to the examples and play around with them.
Sometimes it is best to learn from one’s own experience.

8.1 Wavelet transforms

What are wavelet transforms? They13 are transforms which allow analysing a
signal both in terms of the frequencies it contains and in terms of how it changes
with time. That this is possible is not trivial and entails several peculiarities,
some of which we will encounter shortly. You may have heard of the Fourier

12Though the A-weighting strictly speaking applies to the intensity (squared amplitude)
rather than the amplitude, invA is written to be used as shown here — to be multiplied with
an amplitude. invA provides the square root of the inverse intensity A-weighting.

13I am using the plural because, as we will see, there are several different types of wavelets,
which yield different types of transforms.

39

transform, which transforms a signal into its frequency spectrum. Wavelet
transform go farther in that they can say which frequencies a signal contains at
a given time, at least to some extent.

If a wavelet transform truly could give a full frequency spectrum at every
time, the amount of data would be huge. (A single Fourier spectrum alone
has as much data as the signal itself.) Somehow it is intuitively clear that this
amount of data would be highly redundant, or that most data sets would fit no
corresponding signal. In fact, a wavelet transform generates exactly as many
data as the signal provides. Unlike the Fourier transform, it does not decompose
the signal into sine waves with multiples of a certain base frequency. It merely
divides the signal into bands between frequencies which are factors of two apart,
the highest of which is half the sampling rate. The lowest boundary frequency
is a constant parameter of all wavelet-related objects available in sndsys.

Beside the “rough” frequency resolution in octaves, a further peculiarity of
wavelet transforms is the frequency-dependent time resolution. Every second
value of a wavelet-transformed signal belongs to the highest frequency band,
every fourth to the next lower and so on. This can be understood if one realises
that higher frequency oscillations have shorter periods — so their time resolution
is correspondingly more accurate.

But what are wavelets really? As their name suggests, they are small waves.
As we will see below, they are oscillations which have a certain amplitude at
a point in time but which fall off rapidly to zero both before and afterwards.
The different frequency bands analysed by a wavelet transform correspond to
wavelets scaled by different powers of two. Since different (though not just any)
wavelet shapes can serve to generate a transform, there are several different
wavelet transforms. sndsys provides the most widespread ones and offers the
possibility to perform custom ones as well.

The simplest kind of wavelet is the Haar wavelet. Even though it is not really
suitable for generating and manipulating sounds (unless you favour industrial-
grade distortion), sndsys provides two implementations of it: wthaarnn is
the very fast un-normalised version, and wthaar the conventionally normalised
variety. iwthaarnn and iwthaar are the corresponding inverse transforms which
restore a signal from its wavelet decomposition. I programmed these transforms
because they are easy to do, and they may have applications in encryption and
data compression.

The other wavelet transforms come in series. Besides the bottom boundary
frequency and the signal input, they have as an additional parameter the order
of the transform. This is an even number determining the number of samples
the highest frequency wavelet is long. The wavelet transform objects wtdaub,
wtdaubla and wtdaubbl are variants of the Daubechies wavelet transform. (The
inverse transforms have the same name with an i in front.) wtdaub uses the
classical Daubechies wavelets. The other two are modified to enhance certain
properties of the wavelets which cannot all be achieved at once.

wtdaubbl gives the best relative localisation for coefficients in different
wavelet bands — for other wavelets, the non-zero transformed values making
up a short bump may be far apart. The downside of this optimisation is that

40

the frequency bands are not as clearly separated as they could be, but rather
washed out. Another trade-off is that these wavelets are more likely to give rise
to artifacts when the wavelet-transformed data are manipulated. The “least
asymmetric” Daubechies wavelets implemented in wtdaubla are a compromise
between all three properties. They are the ones I use most frequently. The orders
of all variants of Daubechies wavelets implemented in sndsys are between 2 and
20 (only even numbers).

Finally, the last series of wavelets provided by sndsys is the so-called
Coiflets. Implemented by the sndobj wtcoif, their order has to be divisible
by six and ranges from 6 to 30. Though the small-order coiflet transforms
are artifact-prone, I have found the higher-order ones as useful as the least
asymmetric Daubechies wavelets for sound applications.

For performing a wavelet transform based on any quadrature mirror filter,
the sndobj wtany and its inverse iwtany are provided.14 All the above-
mentioned transforms (except wthaarnn) are in fact special cases of wtany.
It has the scaling function or smoothing filter as its argument rather than
the corresponding wavelet filter; the scaling function is given by a float array
concluded by the magic value END. An additional parameter (llap) is used to
shift the filters in time and thereby adjust the phase behaviour, or temporal
localisation, of the transform. wtany was programmed to make the transforms
as free of artifacts as possible. The filters which separate the frequency bands
were programmed as true moving filters without folding some coefficients back
into a fixed-size interval, as is sometimes done. This has the disadvantage that
for high-order wavelets the transformed data depend on sample values from a
long time interval, but you can’t have everything.

So what does a wavelet actually look like? We can use sndsys to generate
some single wavelets well separated from each other:

output= iwtdaubla(20, 20, linear(0, 0.5,
slide(c(20), c(20), c(0.5), c(1), c(0.5))));

duration= 5.0;

View the result in a waveform editor. You will see several short waves
appearing and decaying, the wavelets. (That the lower-frequency wavelets have
a smaller amplitude is a consequence of their different normalisation and of our
simple way of generating them.) We used the slide object to generate a series
of single-sample cues approximately 0.05 seconds apart but strongly randomised
(±50%). The random intervals cause the cues to hit wavelet data representing
different wavelet bands, with high-frequency bands more probable due to their
data being more frequent. The single wavelets sound like clicks and “bop”
sounds of varying frequency.

For more information about wavelets, look into wikipedia or your favourite
search engine. For the mathematically interested reader, I can recommend the
book [wm] which includes proofs and exercises. [nr] also has a section about

14If you don’t know what a quadrature mirror filter is and don’t want to go and find out, you
won’t be creating your own wavelet transform and can skip this rather technical paragraph.

41

wavelets, which is available here. If you are interested how sndsys represents
wavelet-transformed data, read the description at the beginning of sndwt.c and
the documentation of wtany.

8.2 Manipulating wavelet bands

Judging from my experience so far, wavelets are more useful for changing and
shaping sounds than generating them “from nothing”. To that end, sndsys
offers a number of objects allowing to manipulate wavelet data.

wshift shifts the wavelet data upward or downward in frequency. Because
every higher wavelet band has a factor of two more data, this involves
interpolating the data. wshift’s (mode) argument determines how this is done.
The mode WSHIFT SELECT simply picks out or repeats data and creates the worst
artifacts (after reverse transforming the signal). WSHIFT SPREAD performs some
interpolation but still causes artifacts. These artifacts are in fact similar to
those resulting from repeathw (see Section 7.5), probably because wavelets and
half-waves behave similarly. In my experience the artifacts of wshift are less
strong, at least for shifting downwards in frequency; though that may depend
on the sound signal. The third mode of operation, WSHIFT SUCC, interpolates
between successive data of the some wavelet band. Far from generating a smooth
output, this results in a strong metallic distortion. wshift’s third parameter
is the number of wavelet bands (octaves) to shift the signal upward (>0) or
downward (<0).

Rather than give an example for wshift, I will proceed right away to the
next object affecting wavelet-transformed data, wspread. What this sndobj
does amounts to executing wspread for all upward and downward shifts and
adding the results to the original signal, with smaller and smaller prefactors the
larger the shift. It has a parameter giving the wshift mode and two inputs
determining the prefactors of the signal shifted up or down by one band. The
prefactors of the multiply shifted signals are the squares or higher powers of
these inputs.

wspread generates a full, choir-like sound for modes WSHIFT SELECT and
WSHIFT SPREAD. Interestingly, the distortion of WSHIFT SELECT is hardly audible
(it seems to cancel out between the different amounts of shift), so this is the
mode to prefer of those two. The mode WSHIFT SUCC again creates a metallic
distortion, a fuller sound but a worse distortion than wshift for a single shift
alone. Let’s now apply this to a wave file so you can hear the effect for yourself.

output= iwtdaubla(20, 20., wspread(20., WSHIFT_SELECT, c(0.25), c(0.4),
wtdaubla(20, 20., file("song.wav", NULL))));

The sound signal is first wavelet-transformed, then put through wspread,
and transformed back. To try out the metallic distortion which is a
frequent feature of manually manipulated wavelets, substitute the operation
mode WSHIFT SUCC or replace wspread(20., WSHIFT SELECT, c(0.25),
c(0.4),... by wshift(20., WSHIFT SUCC, 1, The metallic distortion

42

http://www.nrbook.com/b/bookcpdf/c13-10.pdf

makes wavelets great for generating sounds reminiscent of metal objects being
hit. For instance, try the following:

double trigger0[]= { 0.0, 1, END };

output= iwtdaubla(8, 20., wshift(20., WSHIFT_SUCC, -2, wtdaubla(8, 20.,
mul(2, rect(0., c(14000.), c(1.), c(0)),

expodecay(c(0.2), at(0, trigger0))))));

As usual, this processing chain has to be read from right to left. A
rectangular wave is generated and made to decay exponentially by multiplication
with an expodecay object. Its frequency is four times as high as the output we
want, because wshift will shift it down by two octaves. This decaying wave
is wavelet-transformed, wshift is applied, and the result is transformed back.
Note that we use low-order wavelets here because we want a certain amount of
distortion. You are encouraged to experiment with this code example: Choosing
higher-order wavelets will diminish the metallic sound. You can replace the rect
with a saw which will sound different and less metallic. Try varying the number
and direction of the octave shifts, adapting the original frequency in the opposite
direction for a better comparison. This will create completely different sounds,
though a certain metallic quality will always be there.

The next wavelet sndobj we will have a look at is wselect. It allows
to suppress specific wavelet bands. The bands to be kept are either chosen
explicitly (operation mode WSELECT INDEX) or by the size of the corresponding
coefficients (the other modes). Unlike for other sndobj’s, wselect’s mode is an
input and can therefore be changed on the fly. The second input is a bit mask
in which a bit is set for each wavelet band to keep. Bit 0, which has the value 1,
represents the highest-frequency band for mode WSELECT INDEX or the largest
in magnitude for the other modes. The bit values 2ni have to be added up to
give the mask selecting the nth

i wavelet bands.15

wselect can be used to generate fine cymbal sounds. To that end, we select
a single wavelet band from decaying white noise:

double trigger0[]= { 0.0, 1, END };

output= iwtcoif(30, 20., wselect(20., c(WSELECT_INDEX), c(0x2),
wtcoif(30, 20., mul(2, gaussrand(.3),

expodecay(c(0.3), at(0, trigger0))))));

Here, the highest-order “coiflets” were used, and gaussrand was preferred
over flatrand, because in my personal opinion this combination sounds
best. Compare that to the bland sound of just mul(2, gaussrand(.3),
expodecay(c(0.3), at(0, trigger0)))! Of course, all we have done is
created a narrow band-pass filter which we apply to the white noise. But

15Never mind that sound data are really floating-point. The <mask> input is rounded to
the nearest integer and treated as such.

43

wavelets give us ready access to such band-passes. In fact, the above code
could be simplified by leaving out the wtcoif object, because the wavelet
transform of uncorrelated noise is also uncorrelated noise. Only the argument
of gaussrand should be made larger to match the normalisation of the wavelet
band in question.

The constant object c(0x2) selects the second-highest wavelet band, with
the number 2 given in hexadecimal. Other bands also give nice noises. For
instance, selecting two of the lower bands with the hexadecimal constant 0x300
generates the rumbling of far-away thunder. To avoid having to adapt the
volume of the Gaussian noise again, you can use a feature of wselect: use
“WSELECT INDEX|WSELECT SAMERMS” as the mode instead of just WSELECT INDEX,
and wselect will try to compensate differences between the wavelet bands’
normalisation itself.

The other modes of wselect, which keep wavelet bands depending on how
large their respective data are, give strange or outright silly effects. These modes
differ only in details. You can best test them by applying wselect to a wavelet-
transformed digitised song. Choose a mask of 0xF or 0x1F to keep about half
the bands. You will hear abrupt changes in the sound as specific bands are
switched on and off.

Other sndobj’s which work on wavelet-transformed data are wtrunc,
wthresh and wlinear. wtrunc suppresses all wavelet bands above or below
a given frequency. For most wavelets, this is a lowpass or highpass, but
for low-order wavelets special effects can result. wthresh suppresses wavelet
bands which do not exceed a certain magnitude. wlinear is in some sense a
generalisation of wspread. It allows you to do a general linear transformation
between wavelet bands. For instance, you could create a variant of wspread
which only spreads wavelet bands to their immediate neighbours, or to their
second and fourth neighbours and so on. You can also mirror wavelet bands,
swapping high and low frequencies. Just because it sounds so outrageous, here
is an example you can apply to a digitised song:

float wlinmirror[110]= {
0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,

};

output= iwtdaubla(20, 20., wlinear(20., WSHIFT_SELECT, 10,
wlinmirror, wtdaubla(20, 20., file("song.wav", NULL))));

44

8.3 Controlled manipulation

The observant reader will have noticed that I have kept the parameter inputs of
the wavelet objects in the previous section constant. The curious may have tried
to vary them and met unexpected results. The reason for this is that the wavelet-
transformed signals are delayed relative to those which are not transformed
(to which the signals changing parameters usually belong). This delay can be
compensated with the objects wdelay and iwdelay which should always be used
with non-constant parameter inputs of wspread, wselect, wtrunc and wthresh.

wdelay creates the same delay as a wavelet-transformed signal relative to the
untransformed signal, while iwdelay has the opposite (negative) delay. Both
have as parameters the lower boundary frequency, the order of the wavelet
transform and its “overlap” parameter. The latter is 0 for Haar and ordinary
Daubechies wavelets and should be passed as WDELAY CENTRE for the optimised
Daubechies wavelets and Coiflets. Note that the first two arguments of wdelay
and iwdelay are reversed compared to the wavelet transform objects. (That is
so for “historical” reasons, or in other words for no good reason.)

As an example, consider you might want to slowly fade in the choir effect
created by wspread. This can be done by using a ramp to adjust its parameter
inputs and delaying them with wdelay.

sndobj *tmp;
double fadein[]= { 0, 0, RAMP_L, 5, 1, END };

tmp= wdelay(20., 20, WDELAY_CENTRE, ramp(0, fadein));
output= iwtdaubla(20, 20., wspread(20., WSHIFT_SELECT,

linear(0, 0.25, tmp), linear(0, 0.4, tmp),
wtdaubla(20, 20., file("song.wav", NULL))));

9 More information

This tutorial, even the advanced chapters, is by no means exhaustive. There
are a number of sndobj’s which have not been mentioned. Some are highly
experimental (sndsys is a test bench first and foremost, after all), others didn’t
work out the way I hoped and were abandoned. If you are missing something,
look through sndsys.h and use objectdoc.pl to view the documentation of
anything that might be it (or might help to create it). If you find something,
test it in a simple short program. If you don’t find anything, or if it does not
work as you expect, you are stumped unless you know C.

This brings us to the second thing which is missing from this tutorial. If you
know the C programming language, you can create sndobj’s of your own. The
file README.SNDSYS contains terse information on how to do this, as well as
a description of how sndsys really works internally. It is required reading for
anybody aiming to extend, or merely to understand, sndsys. The document of
last resort is of course the source code itself, some of which is even documented ;).

45

It contains a lot of sndobj’s which can serve as examples, as well as some nasty
hand-optimised hacks.

References

[abc] abc music notation
http://abcnotation.org.uk/

[iow] University of Iowa Electronic Music Studios
http://theremin.music.uiowa.edu/

[jos] Julius O. Smith’s online books
http://ccrma.stanford.edu/∼jos/

[kwa] Kwave, a sound editor for KDE
http://kwave.sourceforge.net/

[nr] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery:
Numerical Recipes in C
Cambridge University Press 1988, ISBN 0-512-43108-5
http://www.nrbook.com/b/bookcpdf.php

[sap] Sapphire — an acoustic compiler
http://www.pale.org/sapphire/index.html

[sfi] H.-O. Peitgen and D. Saupe (Eds.): The Science of Fractal Images
Springer 1988, ISBN 0-387-96608-0 or 3-540-96608-0

[snd] Snd, a sound editor
http://ccrma.stanford.edu/software/snd/

[sox] SOX — Sound eXchange
http://sox.sourceforge.net/

[swe] Sweep, an audio editor
http://www.metadecks.org/software/sweep/index.html

[wm] D. B. Percival and A. T. Walden: Wavelet Methods for Time Series
Analysis
Cambridge University Press 2000, ISBN 0-521-64068-7

[xfig] Xfig, a drawing program for X windows
www.xfig.org/

46

http://abcnotation.org.uk/
http://theremin.music.uiowa.edu/
http://ccrma.stanford.edu/~jos/
http://kwave.sourceforge.net/
http://www.nrbook.com/b/bookcpdf.php
http://www.pale.org/sapphire/index.html
http://ccrma.stanford.edu/software/snd/
http://sox.sourceforge.net/
http://www.metadecks.org/software/sweep/index.html
www.xfig.org/

	What's sndsys?
	Getting started
	Requirements
	Useful supplementary software
	A look at a sndsys program
	How to run it

	Generating simple sounds
	Guess what -- a sine
	Other tones
	Random noise
	Modulation -- trees of sndobj's
	Chords -- adding up

	Modifying sounds
	Reading a wave file
	Highpass and lowpass
	Peak and notch filters
	General filters
	Reverberation and basic mixing
	Distortion and effects

	Give every tone its cue
	Envelope shaping
	Cues and ramps
	Auxiliary triggered objects
	A humaniser

	Miscellaneous sndobj's
	Delays
	Arithmetic and comparisons
	Stereo and multi-channel processing
	Mixing and panning
	Speaker and microphone
	Threads
	A curiosity: Verhulst dynamics

	Advanced sound synthesis
	Waveforms
	Fix the clicks
	Fractional Brownian motion --- a noise generator
	More noise and randomised cues
	Waveform manipulations
	A string model --- backfeed loops
	Scores and instruments

	Wavelets
	Wavelet transforms
	Manipulating wavelet bands
	Controlled manipulation

	More information
	References

